Search results

Search for "blood–brain barrier (BBB)" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • because most drugs cannot cross the bloodbrain barrier (BBB) [115][116]. Besides, the accumulation of drugs at damaged areas of the BBB can lead to an unprotected, disrupted BBB and to disturbances of the brain microenvironment. In contrast, the integrity of the BBB can decrease the accumulation of drugs
PDF
Album
Review
Published 12 Apr 2024

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • showed that the PLGA nanoparticles functionalized with 8D3 antibody were able to cross the bloodbrain barrier (BBB) as demonstrated by the analgesic effect of encapsulated loperamide on mice. PLGA nanoparticles prepared using Polysorbate 80 with the same formulation discussed above (diameter ca. 27 nm
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • (CNS), where endothelial cells form the tightest and the most selective bloodbrain barrier (BBB) that provides protection against the penetration of harmful substances and pathogens. Other types of connections include adherens junctions, maintained primarily by transmembrane VE-cadherin, and gap
PDF
Album
Review
Published 08 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • cells have also been found to have the ability to penetrate the bloodbrain barrier (BBB) in some special cases [26][27]. As a highly specialized structure, the BBB maintains homeostasis of the central nervous system [48]. The targeted delivery of drugs to the brain is challenging because of the limited
PDF
Album
Review
Published 27 Feb 2023

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • Central nervous system diseases are a heavy burden on society and health care systems. Hence, the delivery of drugs to the brain has gained more and more interest. The brain is protected by the bloodbrain barrier (BBB), a selective barrier formed by the endothelial cells of the cerebral microvessels
  • nanoparticles (AuNPs); bloodbrain barrier (BBB); drug delivery; liposomes; nanomedicine; polymeric nanoparticles; solid lipid nanoparticles; superparamagnetic iron oxide nanoparticles (SPIONs); Introduction Neurological disorders and brain diseases are real burdens for modern societies and healthcare systems
  • damaged by ischemia [2]. One of the main limitations for the treatment of neurological disorders is the difficulty to deliver drugs to the brain. The brain is surrounded by the bloodbrain barrier (BBB), a selective barrier formed by the endothelial cells of the cerebral microvessels [3][4]. The surface
PDF
Album
Review
Published 04 Jun 2020

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • and specialized structures such as the bloodbrain barrier (BBB). To be able to safely employ LTS in nanomedicine, such unwanted effects need to be studied. Previously, we investigated effects of silica (Si-), namely silica-ICG/poly(ε-caprolactone) (PCL) and silica-ICG/poly(ε-caprolactone-poly(L
PDF
Album
Full Research Paper
Published 25 Apr 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • drug-loaded liposomes for glioblastoma treatment. Glioblastoma, localized in the brain, represents one of the major challenges in drug delivery due to the necessity to pass the blood brain barrier (BBB). BBB inhibits the passage of 98% of the medicines administered through the systemic route and
PDF
Album
Review
Published 14 Jan 2019

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • , intravenous or orally administered chemotherapy drugs have very low efficacy due to challenges in reaching the brain and tumor area. The blood brain barrier (BBB) is the essential protection of the brain and only 1% of chemotherapeutic agents can pass this barrier without losing their pharmacological activity
PDF
Album
Full Research Paper
Published 12 Jul 2017

Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

  • Bin Song,
  • Yanli Zhang,
  • Jia Liu,
  • Xiaoli Feng,
  • Ting Zhou and
  • Longquan Shao

Beilstein J. Nanotechnol. 2016, 7, 645–654, doi:10.3762/bjnano.7.57

Graphical Abstract
  • mice were exposed to TiO2 NPs via several administration routes (e.g., nasal instillation, subcutaneous injection and oral exposure), NPs can be absorbed and translocated into the brain mainly through the bloodbrain barrier (BBB) or the nose-to-brain pathway, which bypasses the BBB. Given that TiO2
PDF
Review
Published 29 Apr 2016
Other Beilstein-Institut Open Science Activities